MathDB
a little ugly sequences and trig sums

Source: Romanian Nationals RMO 2005 - grade 10, problem 1

March 31, 2005
trigonometrycalculusderivativealgebra proposedalgebra

Problem Statement

Let nn be a positive integer, n2n\geq 2. For each tRt\in \mathbb{R}, tkπt\neq k\pi, kZk\in\mathbb{Z}, we consider the numbers xn(t)=k=1nk(nk)cos(tk) and yn(t)=k=1nk(nk)sin(tk). x_n(t) = \sum_{k=1}^n k(n-k)\cos{(tk)} \textrm{ and } y_n(t) = \sum_{k=1}^n k(n-k)\sin{(tk)}. Prove that if xn(t)=yn(t)=0x_n(t) = y_n(t) =0 if and only if tannt2=ntant2\tan {\frac {nt}2} = n \tan {\frac t2}. Constantin Buse