MathDB
Array compatibility

Source: RMO 2019 P4

October 20, 2019
combinatoricsnumber theoryRMO

Problem Statement

Consider the following 3×23\times 2 array formed by using the numbers 1,2,3,4,5,61,2,3,4,5,6, (a11a12a21a22a31a32)=(162534).\begin{pmatrix} a_{11}& a_{12}\\a_{21}& a_{22}\\ a_{31}& a_{32}\end{pmatrix}=\begin{pmatrix}1& 6\\2& 5\\ 3& 4\end{pmatrix}. Observe that all row sums are equal, but the sum of the square of the squares is not the same for each row. Extend the above array to a 3×k3\times k array (aij)3×k(a_{ij})_{3\times k} for a suitable kk, adding more columns, using the numbers 7,8,9,,3k7,8,9,\dots ,3k such that j=1ka1j=j=1ka2j=j=1ka3j  and  j=1k(a1j)2=j=1k(a2j)2=j=1k(a3j)2\sum_{j=1}^k a_{1j}=\sum_{j=1}^k a_{2j}=\sum_{j=1}^k a_{3j}~~\text{and}~~\sum_{j=1}^k (a_{1j})^2=\sum_{j=1}^k (a_{2j})^2=\sum_{j=1}^k (a_{3j})^2