MathDB
Problems
Contests
National and Regional Contests
Canada Contests
Canada National Olympiad
2019 Canada National Olympiad
4
Absolute Value Inequality for all k
Absolute Value Inequality for all k
Source: Canada 2019 Problem 4
March 29, 2019
absolute value
inequalities
n-variable inequality
Problem Statement
Prove that for
n
>
1
n>1
n
>
1
and real numbers
a
0
,
a
1
,
…
,
a
n
,
k
a_0,a_1,\dots, a_n,k
a
0
,
a
1
,
…
,
a
n
,
k
with
a
1
=
a
n
−
1
=
0
a_1=a_{n-1}=0
a
1
=
a
n
−
1
=
0
,
∣
a
0
∣
−
∣
a
n
∣
≤
∑
i
=
0
n
−
2
∣
a
i
−
k
a
i
+
1
−
a
i
+
2
∣
.
|a_0|-|a_n|\leq \sum_{i=0}^{n-2}|a_i-ka_{i+1}-a_{i+2}|.
∣
a
0
∣
−
∣
a
n
∣
≤
i
=
0
∑
n
−
2
∣
a
i
−
k
a
i
+
1
−
a
i
+
2
∣.
Back to Problems
View on AoPS