MathDB
Miklós Schweitzer 1956- Problem 7

Source:

October 11, 2015
college contests

Problem Statement

7. Let (an)n=0(a_n)_{n=0}^{\infty} be a sequence of real numbers such that, with some positive number CC,
k=1nkak<nC\sum_{k=1}^{n}k\mid a_k \mid<n C (n=1,2,n=1,2, \dots )
Putting sn=a0+a1++ans_n= a_0 +a_1+\dots+a_n, suppose that
limn(s0+s1++snn+1)=s\lim_{n \to \infty }(\frac{s_{0}+s_{1}+\dots+s_n}{n+1})= s
exists. Prove that
limn(s02+s12++sn2n+1)=s2\lim_{n \to \infty }(\frac{s_{0}^2+s_{1}^2+\dots+s_n^2}{n+1})= s^2
(S. 7)