MathDB
Problems
Contests
National and Regional Contests
China Contests
China Team Selection Test
2012 China Team Selection Test
1
Complex numbers
Complex numbers
Source: 2012 China TST Quiz 1 Day 1 P1
March 14, 2012
inequalities
complex numbers
triangle inequality
algebra proposed
algebra
Problem Statement
Complex numbers
x
i
,
y
i
{x_i},{y_i}
x
i
,
y
i
satisfy
∣
x
i
∣
=
∣
y
i
∣
=
1
\left| {{x_i}} \right| = \left| {{y_i}} \right| = 1
∣
x
i
∣
=
∣
y
i
∣
=
1
for
i
=
1
,
2
,
…
,
n
i=1,2,\ldots ,n
i
=
1
,
2
,
…
,
n
. Let
x
=
1
n
∑
i
=
1
n
x
i
x=\frac{1}{n}\sum\limits_{i=1}^n{{x_i}}
x
=
n
1
i
=
1
∑
n
x
i
,
y
=
1
n
∑
i
=
1
n
y
i
y=\frac{1}{n}\sum\limits_{i=1}^n{{y_i}}
y
=
n
1
i
=
1
∑
n
y
i
and
z
i
=
x
y
i
+
y
x
i
−
x
i
y
i
z_i=x{y_i}+y{x_i}-{x_i}{y_i}
z
i
=
x
y
i
+
y
x
i
−
x
i
y
i
. Prove that
∑
i
=
1
n
∣
z
i
∣
⩽
n
\sum\limits_{i=1}^n{\left| {{z_i}}\right|}\leqslant n
i
=
1
∑
n
∣
z
i
∣
⩽
n
.
Back to Problems
View on AoPS