MathDB
Complex numbers

Source: 2012 China TST Quiz 1 Day 1 P1

March 14, 2012
inequalitiescomplex numberstriangle inequalityalgebra proposedalgebra

Problem Statement

Complex numbers xi,yi{x_i},{y_i} satisfy xi=yi=1\left| {{x_i}} \right| = \left| {{y_i}} \right| = 1 for i=1,2,,ni=1,2,\ldots ,n. Let x=1ni=1nxix=\frac{1}{n}\sum\limits_{i=1}^n{{x_i}}, y=1ni=1nyiy=\frac{1}{n}\sum\limits_{i=1}^n{{y_i}} and zi=xyi+yxixiyiz_i=x{y_i}+y{x_i}-{x_i}{y_i}. Prove that i=1nzin\sum\limits_{i=1}^n{\left| {{z_i}}\right|}\leqslant n.