Let Q be the set of all rational numbers and R be the set of real numbers. Function f:Q→R satisfies the following conditions:(i) f(0)=0, and for any nonzero a∈Q,f(a)>0.
(ii) f(x+y)=f(x)f(y)∀x,y∈Q.
(iii) f(x+y)≤max{f(x),f(y)}∀x,y∈Q,x,y=0.Let x be an integer and f(x)=1. Prove that f(1+x+x2+⋯+xn)=1 for any positive integer n.