MathDB
\sum1/{4-ab}

Source: Moldova TST 2005

March 21, 2005
inequalitiesfunctioninequalities proposed

Problem Statement

Let a a, b b, c c be positive reals such that a^4 \plus{} b^4 \plus{} c^4 \equal{} 3. Prove that \sum\frac1{4 \minus{} ab}\leq1, where the āˆ‘ \sum sign stands for cyclic summation. Alternative formulation: For any positive reals a a, b b, c c satisfying a^4 \plus{} b^4 \plus{} c^4 \equal{} 3, prove the inequality \frac{1}{4\minus{}bc}\plus{}\frac{1}{4\minus{}ca}\plus{}\frac{1}{4\minus{}ab}\leq 1.