Applying the Quadratic Formula
Source:
February 1, 2009
quadraticsalgebraquadratic formula
Problem Statement
If in applying the quadratic formula to a quadratic equation
f(x)\equiv ax^2 \plus{} bx \plus{} c \equal{} 0,
it happens that c \equal{} \frac {b^2}{4a}, then the graph of y \equal{} f(x) will certainly:
(A)\ \text{have a maximum} \qquad(B)\ \text{have a minimum} \qquad(C)\ \text{be tangent to the x \minus{} axis} \\
\qquad(D)\ \text{be tangent to the y \minus{} axis} \qquad(E)\ \text{lie in one quadrant only}