MathDB
Smallest n....Rationals

Source:

December 9, 2010
algebra unsolvedalgebra

Problem Statement

Determine the smallest odd integer n3n \ge 3, for which there exist nn rational numbers x1,x2,...,xnx_1 , x_2 , . . . , x_n with the following properties:
(a)(a) i=1nxi=0, i=1nxi2=1.\sum_{i=1}^{n} x_i =0 , \ \sum_{i=1}^{n} x_i^2 = 1.
(b)(b) xixj1n  1i,jn.x_i \cdot x_j \ge - \frac 1n \ \forall \ 1 \le i,j \le n.