MathDB
combinatorial sum is never zero

Source: Putnam 1983 A4

September 14, 2021
algebra

Problem Statement

Let kk be a positive integer and let m=6k1m=6k-1. Let S(m)=j=12k1(1)j+1(m3j1).S(m)=\sum_{j=1}^{2k-1}(-1)^{j+1}\binom m{3j-1}.Prove that S(m)S(m) is never zero.