MathDB
Complex Numbers

Source: Contest "Grigore Moisil", 1989

December 5, 2016
complex numbersalgebra

Problem Statement

Let n2n \ge 2 be an integer and z1, z2, z3z_1,~z_2,~z_3 three complex numbers such that zi=1,|z_i|=1, argzi[0,2πn)\arg z_i \in \left[0, \frac{2 \pi}{n} \right) i{1,2,3}\forall i \in \{1,2,3\} and z1n+z2n+z3n=0.z_1^n+z_2^n+z_3^n=0. Find z1+z2+z3.|z_1+z_2+z_3|.
[hide=My solution] I've used the fact that z1n, z2n, z3nz_1^n,~z_2^n,~z_3^n are the affixes of an equilateral triangle, and finally I've got z1+z2+z3=3+4cos2π3n+2cos4π3n.|z_1+z_2+z_3|= \sqrt{3+4 \cos \frac{2 \pi}{3n}+2 \cos \frac{4 \pi}{3n}}.