MathDB
Superabundant Numbers

Source:

September 9, 2010
number theoryDivisorssum of divisorsInequalityIMO Shortlist

Problem Statement

Let nn be a positive integer. Let σ(n)\sigma(n) be the sum of the natural divisors dd of nn (including 11 and nn). We say that an integer m1m \geq 1 is superabundant (P.Erdos, 19441944) if k{1,2,,m1}\forall k \in \{1, 2, \dots , m - 1 \}, σ(m)m>σ(k)k.\frac{\sigma(m)}{m} >\frac{\sigma(k)}{k}. Prove that there exists an infinity of superabundant numbers.