MathDB
2017 Guts #20: n % 1000 > n % 1001

Source:

February 21, 2017
number theory

Problem Statement

For positive integers aa and NN, let r(a,N){0,1,,N1}r(a, N) \in \{0, 1, \dots, N - 1\} denote the remainder of aa when divided by NN. Determine the number of positive integers n1000000n \le 1000000 for which r(n,1000)>r(n,1001).r(n, 1000) > r(n, 1001).