MathDB
2018 PUMaC Individual Finals A2

Source:

January 8, 2019
functionPuMACIndividual Finals

Problem Statement

Find all functions f:R+R+f:\mathbb{R^{+}}\to\mathbb{R^+} such that for all x,yR+x,y\in\mathbb{R^+} it holds that f(xy(1x+1y+1x+y))=f(xy(1x+1y))+f(x)f(yx+y).f\left(xy\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x+y}\right)\right)=f\left(xy\left(\frac{1}{x}+\frac{1}{y}\right)\right)+f(x)f\left(\frac{y}{x+y}\right).