MathDB
Vietnam National Olympiad 2017 Problem 6

Source:

January 6, 2017
number theory

Problem Statement

Prove that a)k=11008kC2017k0\sum_{k=1}^{1008}kC_{2017}^{k}\equiv 0 (mod 201722017^2 )
b)k=1504(1)kC2017k3(220161)\sum_{k=1}^{504}\left ( -1 \right )^kC_{2017}^{k}\equiv 3\left ( 2^{2016}-1 \right ) (mod 201722017^2 )