MathDB
Problem 17, Spring 2005 , HS

Source:

June 23, 2011
function

Problem Statement

Functions ff and gg are defined so that f(1)=4f(1) = 4, g(1)=9g(1) = 9, and for each integer n1n \ge 1, f(n+1)=2f(n)+3g(n)+2nf(n+1) = 2f(n) + 3g(n) + 2n and g(n+1)=2g(n)+3f(n)+5g(n+1) = 2g(n) + 3 f(n) + 5. Find f(2005)g(2005)f(2005) - g(2005).