MathDB
a_{n+1} =a^2_n /(a^2_n - a_n + 1)

Source: Canada Repêchage 2024/4 CMOQR

March 25, 2024
algebrarecurrence relationinequalities

Problem Statement

A sequence {ai}\{a_i\} is given such that a1=13a_1 = \frac13 and for all positive integers nn an+1=an2an2an+1.a_{n+1} =\frac{a^2_n}{a^2_n - a_n + 1}. Prove that 12132n1<a1+a2+...+an<12132n,\frac12 - \frac{1}{3^{2^{n-1}}} < a_1 + a_2 +... + a_n <\frac12 - \frac{1}{3^{2^n}} , for all positive integers nn.