MathDB
sum \sqrt{a_i^2+1}>= \sqrt{2n(a_1 + a_2 +...+ a_n}}

Source: 2004 Moldova JBMO TST p2

February 20, 2021
algebrainequalities

Problem Statement

Let nNn \in N^* . Let a1,a2...,ana_1, a_2..., a_n be real such that a1+a2+...+an0a_1 + a_2 +...+ a_n \ge 0. Prove the inequality a12+1+a22+1+...+a12+12n(a1+a2+...+an)\sqrt{a_1^2+1}+\sqrt{a_2^2+1}+...+\sqrt{a_1^2+1}\ge \sqrt{2n(a_1 + a_2 +...+ a_n )}.