MathDB
Romanian District Olympiad 2010

Source: Grade IX

March 13, 2010
geometryvectorgeometry proposed

Problem Statement

A right that passes through the incircle I I of the triangle ΔABC \Delta ABC intersects the side AB AB and CA CA in P P, respective Q Q. We denote BC\equal{}a\ , \ AC\equal{}b\ ,\ AB\equal{}c and \frac{PB}{PA}\equal{}p\ ,\ \frac{QC}{QA}\equal{}q. i) Prove that: a(1\plus{}p)\cdot \overrightarrow{IP}\equal{}(a\minus{}pb)\overrightarrow{IB}\minus{}pc\overrightarrow{IC} ii) Show that a\equal{}bp\plus{}cq. iii) If a^2\equal{}4bcpq, then the rights AI , BQ AI\ ,\ BQ and CP CP are concurrents.