MathDB
Problems
Contests
National and Regional Contests
Romania Contests
Romania Team Selection Test
2014 Romania Team Selection Test
3
Maximizing a sum !
Maximizing a sum !
Source: Romania TST Day 5 Problem 3
January 21, 2015
inequalities unsolved
inequalities
algebra
Problem Statement
Let
n
n
n
a positive integer and let
f
:
[
0
,
1
]
→
R
f\colon [0,1] \to \mathbb{R}
f
:
[
0
,
1
]
→
R
an increasing function. Find the value of :
max
0
≤
x
1
≤
⋯
≤
x
n
≤
1
∑
k
=
1
n
f
(
∣
x
k
−
2
k
−
1
2
n
∣
)
\max_{0\leq x_1\leq\cdots\leq x_n\leq 1}\sum_{k=1}^{n}f\left ( \left | x_k-\frac{2k-1}{2n} \right | \right )
0
≤
x
1
≤
⋯
≤
x
n
≤
1
max
k
=
1
∑
n
f
(
x
k
−
2
n
2
k
−
1
)
Back to Problems
View on AoPS