MathDB
P 17

Source:

May 25, 2007
quadraticsAdditive Number Theorypen

Problem Statement

Let pp be a prime number of the form 4k+14k+1. Suppose that rr is a quadratic residue of pp and that ss is a quadratic nonresidue of pp. Show that p=a2+b2p=a^{2}+b^{2}, where a=12i=1p1(i(i2r)p),b=12i=1p1(i(i2s)p).a=\frac{1}{2}\sum^{p-1}_{i=1}\left( \frac{i(i^{2}-r)}{p}\right), b=\frac{1}{2}\sum^{p-1}_{i=1}\left( \frac{i(i^{2}-s)}{p}\right). Here, (kp)\left( \frac{k}{p}\right) denotes the Legendre Symbol.