MathDB
Nice Geometry

Source: 2014 Korean Mathematical Olympiad #5.

January 22, 2015
geometrygeometry proposed

Problem Statement

There is a convex quadrilateral ABCD ABCD which satisfies A=D \angle A=\angle D . Let the midpoints of AB,AD,CD AB, AD, CD be L,M,N L,M,N . Let's say the intersection point of AC,BD AC, BD be E E . Let's say point F F which lies on ME \overrightarrow{ME} satisfies ME×MF=MA2 \overline{ME}\times \overline{MF}=\overline{MA}^{2} .
Prove that LFM=MFN \angle LFM=\angle MFN . :)