MathDB
alpha+beta+gamma=1

Source: Moldova TST 2005

April 9, 2005
analytic geometrygeometry solvedgeometry

Problem Statement

In triangle ABCABC, M(BC)M\in(BC), BMBC=α\frac{BM}{BC}=\alpha, N(CA)N\in(CA), CNCA=β\frac{CN}{CA}=\beta, P(AB)P\in(AB), APAB=γ\frac{AP}{AB}=\gamma. Let AMBN={D}AM\cap BN=\{D\}, BNCP={E}BN\cap CP=\{E\}, CPAM={F}CP\cap AM=\{F\}. Prove that SDEF=SBMD+SCNE+SAPFS_{DEF}=S_{BMD}+S_{CNE}+S_{APF} iff α+β+γ=1\alpha+\beta+\gamma=1.