MathDB
S_{ij} +S_{n-1-i,m-1-j} = \frac{2S}{mn}, equal segments

Source: Romania IMO TST 1992 p8

February 19, 2020
combinatorial geometrycombinatorics

Problem Statement

Let m,n2m,n \ge 2 be integers. The sides A00A0mA_{00}A_{0m} and AnmAn0A_{nm}A_{n0} of a convex quadrilateral A00A0mAnmAn0A_{00}A_{0m}A_{nm}A_{n0} are divided into mm equal segments by points A0jA_{0j} and AnjA_{nj} respectively (j=1,...,m1j = 1,...,m-1). The other two sides are divided into nn equal segments by points Ai0A_{i0} and AimA_{im} (i=1,...,n1i = 1,...,n -1). Denote by AijA_{ij} the intersection of lines A0jAnjA_{0j}A{nj} and Ai0AimA_{i0}A_{im}, by SijS_{ij} the area of quadrilateral AijAi,j+1Ai+1,j+1Ai+1,jA_{ij}A_{i, j+1}A_{i+1, j+1}A_{i+1, j} and by SS the area of the big quadrilateral. Show that Sij+Sn1i,m1j=2SmnS_{ij} +S_{n-1-i,m-1-j} = \frac{2S}{mn}