MathDB
sum of k(3k+1 ) / {(3k-1)(3k+2) as irreducible fraction

Source: 2015 Argentina OMA Finals L3 p1

January 16, 2023
algebraSum

Problem Statement

Express the sum of 9999 terms1425+2758++k(3k+1)(3k1)(3k+2)++99298296299\frac{1\cdot 4}{2\cdot 5}+\frac{2\cdot 7}{5\cdot 8}+\ldots +\frac{k(3k+1 )}{(3k-1)(3k+2)}+\ldots +\frac{99\cdot 298}{296\cdot 299} as an irreducible fraction.