MathDB
Master of fractions for the new century wanted

Source: IMO LongList 1988, India 6, Problem 41 of ILL

November 3, 2005
algebra unsolvedalgebra

Problem Statement

i.) Calculate xx if x=(11+62)1162(1162)11+62(5+2+52)(5+1) x = \frac{(11 + 6 \cdot \sqrt{2}) \cdot \sqrt{11 - 6 \cdot \sqrt{2}} - (11 - 6 \cdot \sqrt{2}) \cdot \sqrt{11 + 6 \cdot \sqrt{2}}}{(\sqrt{\sqrt{5} + 2} + \sqrt{\sqrt{5} - 2}) - (\sqrt{\sqrt{5}+1})} ii.) For each positive number x,x, let k=(x+1x)6(x6+1x6)2(x+1x)3(x3+1x3) k = \frac{\left( x + \frac{1}{x} \right)^6 - \left( x^6 + \frac{1}{x^6} \right) - 2}{\left( x + \frac{1}{x} \right)^3 - \left( x^3 + \frac{1}{x^3} \right)} Calculate the minimum value of k.k.