MathDB
Problems
Contests
Undergraduate contests
CIIM
2014 CIIM
Problem 3
CIIM 2014 Problem 3
CIIM 2014 Problem 3
Source:
August 9, 2016
CIIM
CIIM 2014
undergraduate
Problem Statement
Given
n
≥
2
n\geq2
n
≥
2
, let
A
\mathcal{A}
A
be a family of subsets of the set
{
1
,
2
,
…
,
n
}
\{1,2,\dots,n\}
{
1
,
2
,
…
,
n
}
such that, for any
A
1
,
A
2
,
A
3
,
A
4
∈
A
A_1,A_2,A_3,A_4 \in \mathcal{A}
A
1
,
A
2
,
A
3
,
A
4
∈
A
, it holds that
∣
A
1
∪
A
2
∪
A
3
∪
A
4
∣
≤
n
−
2
|A_1 \cup A_2 \cup A_3 \cup A_4| \leq n -2
∣
A
1
∪
A
2
∪
A
3
∪
A
4
∣
≤
n
−
2
. Prove that
∣
A
∣
≤
2
n
−
2
.
|\mathcal{A}| \leq 2^{n-2}.
∣
A
∣
≤
2
n
−
2
.
Back to Problems
View on AoPS