IMO ShortList 1998, geometry problem 4
Source: IMO ShortList 1998, geometry problem 4
October 22, 2004
geometryreflectiontrigonometrycircumcircleIMO ShortlistIsogonal conjugate
Problem Statement
Let and be two points inside triangle such that
\angle MAB \equal{} \angle NAC \mbox{and} \angle MBA \equal{} \angle NBC.
Prove that
\frac {AM \cdot AN}{AB \cdot AC} \plus{} \frac {BM \cdot BN}{BA \cdot BC} \plus{} \frac {CM \cdot CN}{CA \cdot CB} \equal{} 1.