MathDB
convergence of sequence sum with 1/(na_n^2)

Source: VTRMC 2010 P7

May 17, 2021
Sequencesreal analysisSumSummation

Problem Statement

Let n=1an\sum_{n=1}^\infty a_n be a convergent series of positive terms (so ai>0a_i>0 for all ii) and set bn=1nan2b_n=\frac1{na_n^2} for n1n\ge1. Prove that n=1nb1+b2++bn\sum_{n=1}^\infty\frac n{b_1+b_2+\ldots+b_n} is convergent.