MathDB
|x_1c_1 + x_2c_2 +... + x_nc_n| >= |b-a|/2(|c_1|+|c_2|+\ldots+|c_n|)

Source: Polish MO Recond Round 1977 p1

September 9, 2024
algebrainequalities

Problem Statement

Let a a and b b be different real numbers. Prove that for any real numbers c1,c2,,cn c_1, c_2, \ldots,c_n there exists a sequence of n n -elements (xi) (x_i) , each term of which is equal to one of the numbers a a or b b such that x1c1+x2c2++xncnba2(c1+c2++cn). |x_1c_1 + x_2c_2 + \ldots + x_nc_n| \geq \frac{|b-a|}{2}(|c_1|+|c_2|+\ldots+|c_n|).