MathDB
Ceil function [Iran Second Round 1995]

Source:

November 25, 2010
functionceiling functionquadraticsnumber theory proposednumber theory

Problem Statement

Let n0n \geq 0 be an integer. Prove that n+n+1+n+2=9n+8 \lceil \sqrt n +\sqrt{n+1}+\sqrt{n+2} \rceil = \lceil \sqrt{9n+8} \rceil Where x\lceil x \rceil is the smallest integer which is greater or equal to x.x.