MathDB
An easy recurent sequence a_1+a_2+...+a_n<1

Source: Romanian IMO Team Selection Test TST 2003, problem 1

September 24, 2005
algebra proposedalgebra

Problem Statement

Let (an)n1(a_n)_{n\geq 1} be a sequence for real numbers given by a1=1/2a_1=1/2 and for each positive integer nn an+1=an2an2an+1. a_{n+1}=\frac{a_n^2}{a_n^2-a_n+1}. Prove that for every positive integer nn we have a1+a2++an<1a_1+a_2+\cdots + a_n<1.