MathDB
Today's calculation of Integral 648

Source:

September 20, 2010
calculusintegrationfunctioncalculus computations

Problem Statement

Consider a function real-valued function with CC^{\infty}-class on R\mathbb{R} such that:
(a) f(0)=dfdx(0)=0, d2fdx2(0)0.f(0)=\frac{df}{dx}(0)=0,\ \frac{d^2f}{dx^2}(0)\neq 0.
(b) For x0, f(x)>0.x\neq 0,\ f(x)>0.
Judge whether the following integrals (i), (ii)(i),\ (ii) converge or diverge, justify your answer.
(i)(i) x12+x221dx1dx2f(x1)+f(x2).\int\int_{|x_1|^2+|x_2|^2\leq 1} \frac{dx_1dx_2}{f(x_1)+f(x_2)}.
(ii)(ii) x12+x22+x321dx1dx2dx3f(x1)+f(x2)+f(x3).\int\int_{|x_1|^2+|x_2|^2+|x_3|^2\leq 1} \frac{dx_1dx_2dx_3}{f(x_1)+f(x_2)+f(x_3)}.
2010 Kyoto University, Master Course in Mathematics