MathDB
2^215pro2^216me

Source: 2016 AIME II #15

March 17, 2016
AIMEAIME IAIME II

Problem Statement

For 1i2151\leq i\leq 215 let ai=12ia_i=\frac{1}{2^i} and a216=12215a_{216}=\frac{1}{2^{215}}. Let x1,x2,,x216x_1,x_2,\ldots,x_{216} be positive real numbers such that \sum\limits_{i=1}^{216} x_i=1 \text{  and  } \sum\limits_{1\leq ix2=mnx_2=\frac{m}{n}, where mm and nn are relatively prime positive integers. Find m+nm+n.