MathDB
Differentiable function

Source: Vietnam NMO 1987 Problem 5

February 4, 2009
functiontrigonometrylimitintegrationalgebra unsolvedalgebra

Problem Statement

Let f : [0, \plus{}\infty) \to \mathbb R be a differentiable function. Suppose that f(x)5 \left|f(x)\right| \le 5 and f(x)f(x)sinx f(x)f'(x) \ge \sin x for all x0 x \ge 0. Prove that there exists \lim_{x\to\plus{}\infty}f(x).