MathDB
x1x2x3x4=1 - Iran NMO 1997 (Second Round) - Problem4

Source:

October 5, 2010
inequalities proposedinequalities

Problem Statement

Let x1,x2,x3,x4x_1,x_2,x_3,x_4 be positive reals such that x1x2x3x4=1x_1x_2x_3x_4=1. Prove that: i=14xi3max{i=14xi,i=141xi}. \sum_{i=1}^{4}{x_i^3}\geq\max\{ \sum_{i=1}^{4}{x_i},\sum_{i=1}^{4}{\frac{1}{x_i}} \}.