MathDB
<OBC = < ODC wanted, parallelogram and circle

Source: Dutch NMO 2020 p3

November 23, 2020
geometryparallelogramequal angles

Problem Statement

Given is a parallelogram ABCDABCD with A<90o\angle A < 90^o and AB<BC|AB| < |BC|. The angular bisector of angle AA intersects side BCBC in MM and intersects the extension of DCDC in NN. Point OO is the centre of the circle through M,CM, C, and NN. Prove that OBC=ODC\angle OBC = \angle ODC. [asy] unitsize (1.2 cm);
pair A, B, C, D, M, N, O;
A = (0,0); B = (2,0); D = (1,3); C = B + D - A; M = extension(A, incenter(A,B,D), B, C); N = extension(A, incenter(A,B,D), D, C); O = circumcenter(C,M,N);
draw(D--A--B--C); draw(interp(D,N,-0.1)--interp(D,N,1.1)); draw(A--interp(A,N,1.1)); draw(circumcircle(M,C,N)); label("\circ", A + (0.45,0.15)); label("\circ", A + (0.25,0.35));
dot("AA", A, SW); dot("BB", B, SE); dot("CC", C, dir(90)); dot("DD", D, dir(90)); dot("MM", M, SE); dot("NN", N, dir(90)); dot("OO", O, SE); [/asy]