<OBC = < ODC wanted, parallelogram and circle
Source: Dutch NMO 2020 p3
November 23, 2020
geometryparallelogramequal angles
Problem Statement
Given is a parallelogram with and . The angular bisector of angle intersects side in and intersects the extension of in . Point is the centre of the circle through , and . Prove that .
[asy]
unitsize (1.2 cm);pair A, B, C, D, M, N, O;A = (0,0);
B = (2,0);
D = (1,3);
C = B + D - A;
M = extension(A, incenter(A,B,D), B, C);
N = extension(A, incenter(A,B,D), D, C);
O = circumcenter(C,M,N);draw(D--A--B--C);
draw(interp(D,N,-0.1)--interp(D,N,1.1));
draw(A--interp(A,N,1.1));
draw(circumcircle(M,C,N));
label("", A + (0.45,0.15));
label("", A + (0.25,0.35));dot("", A, SW);
dot("", B, SE);
dot("", C, dir(90));
dot("", D, dir(90));
dot("", M, SE);
dot("", N, dir(90));
dot("", O, SE);
[/asy]