MathDB
Romania District Olympiad 2001 - VII Grade

Source:

March 12, 2011
ratiogeometry proposedgeometry

Problem Statement

Consider a convex qudrilateral ABCDABCD and M(AB), N(CD)M\in (AB),\ N\in (CD) such that AMBM=DNCN=k\frac{AM}{BM}=\frac{DN}{CN}=k. Prove that BCADBC\parallel AD if and only if
MN=1k+1AD+kk+1BCMN=\frac{1}{k+1} AD+\frac{k}{k+1} BC
***