MathDB
Fractionary parts of cubes in Q/Z

Source: Romania,2014,First TST,Problem 2

July 18, 2014
inductionmodular arithmeticnumber theoryalgebra

Problem Statement

Let n2n \ge 2 be an integer. Show that there exist n+1n+1 numbers x1,x2,,xn+1QZx_1, x_2, \ldots, x_{n+1} \in \mathbb{Q} \setminus \mathbb{Z}, so that {x13}+{x23}++{xn3}={xn+13}\{ x_1^3 \} + \{ x_2^3 \} + \cdots + \{ x_n^3 \}=\{ x_{n+1}^3 \}, where {x}\{ x \} is the fractionary part of xx.