MathDB
sum sin x_i=0, sum n sin x_i=100, system

Source: Singapore Senior Math Olympiad 2001 2nd Round p1 SMO

April 4, 2020
system of equationstrigonometryalgebra

Problem Statement

Let nn be a positive integer. Suppose that the following simultaneous equations {sinx1+sinx2+...+sinxn=0sinx1+2sinx2+...+nsinxn=100\begin{cases} \sin x_1 + \sin x_2+ ...+ \sin x_n = 0 \\ \sin x_1 + 2\sin x_2+ ...+ n \sin x_n = 100 \end{cases} has a solution, where x1x2,..,xnx_1 x_2,.., x_n are the unknowns. Find the smallest possible positive integer nn. Justify your answer.