MathDB
Putnam 1962 B6

Source: Putnam 1962

May 21, 2022
PutnamtrigonometryFourier

Problem Statement

Let f(x)=k=0naksinkx+bkcoskx,f(x) =\sum_{k=0}^{n} a_{k} \sin kx +b_{k} \cos kx, where aka_k and bkb_k are constants. Show that if f(x)1|f(x)| \leq 1 for x[0,2π]x \in [0, 2 \pi] and there exist 0x1<x2<<x2n<2π0\leq x_1 < x_2 <\ldots < x_{2n} < 2 \pi with f(xi)=1,|f(x_i )|=1, then f(x)=cos(nx+a)f(x)= \cos(nx +a) for some constant a.a.