MathDB
Romania District Olympiad 2001 - Grade XII

Source:

March 16, 2011
group theoryabstract algebrapigeonhole principlesuperior algebrasuperior algebra unsolved

Problem Statement

For any nNn\in \mathbb{N}^*, let Hn={kn!  kZ}H_n=\left\{\frac{k}{n!}\ |\ k\in \mathbb{Z}\right\}.
a) Prove that HnH_n is a subgroup of the group (Q,+)(Q,+) and that Q=nNHnQ=\bigcup_{n\in \mathbb{N}^*} H_n;
b) Prove that if G1,G2,,GmG_1,G_2,\ldots, G_m are subgroups of the group (Q,+)(Q,+) and GiQ, ()1imG_i\neq Q,\ (\forall) 1\le i\le m, then
G1G2GmQG_1\cup G_2\cup \ldots \cup G_m\neq Q
Marian Andronache & Ion Savu