MathDB
SRMC 2010 P3

Source:

December 7, 2015
inequalities

Problem Statement

For positive real numbers a,b,c,d,a, b, c, d, satisfying the following conditions: a(c21)=b(b2+c2)a(c^2 - 1)=b(b^2+c^2) and d1d \leq 1, prove that : d(a1d2+b21+d2)(a+b)c2d(a \sqrt{1-d^2} + b^2 \sqrt{1+d^2}) \leq \frac{(a+b)c}{2}