MathDB
Number of Ant Paths

Source:

August 8, 2024
combinatorics2022

Problem Statement

An ant is walking on a sidewalk and discovers 1212 sidewalk panels with leaves inscribed in them, as shown below. Find the number of ways in which the ant can traverse from point AA to point BB if it can only move
[*] up, down, or right (along the border of a sidewalk panel), or [*] up-right (along one of two margin halves of a leaf)
and cannot visit any border or margin half more than once (an example path is highlighted in red). [asy] unitsize(1cm); int r = 4; int c = 5;
for (int i = 0; i < r; ++i) { for (int j = 0; j < c; ++j) { pair A = (j,i); } } for (int i = 0; i < r; ++i) { for (int j = 0; j < c; ++j) { if (j != c-1) { draw((j,i)--(j+1,i)); } if (i != r-1) { draw((j,i)--(j,i+1)); } } }
for (int i = 1; i < r+1; ++i) { for (int j = 0; j < c-2; ++j) { fill(arc((i,j),1,90,180)--cycle,deepgreen); fill(arc((i-1,j+1),1,270,360)--cycle,deepgreen); draw((i-1,j)--(i,j+1), heavygreen+linewidth(0.5)); draw((i-2/3,j+1/3)--(i-2/3,j+1/3+0.1), heavygreen); draw((i-1/3,j+2/3)--(i-1/3,j+2/3+0.1), heavygreen); draw((i-2/3,j+1/3)--(i-2/3+0.1,j+1/3), heavygreen); draw((i-1/3,j+2/3)--(i-1/3+0.1,j+2/3), heavygreen); draw(arc((i,j),1,90,180)); draw(arc((i-1,j+1),1,270,360)); } } draw((0,3)--(0,1), red+linewidth(1.5)); draw((0,3)--(0,1), red+linewidth(1.5)); draw(arc((1,1),1,90,180), red+linewidth(1.5)); draw((1,2)--(1,1)--(2,1), red+linewidth(1.5)); draw(arc((2,2),1,270,360), red+linewidth(1.5)); draw(arc((4,2),1,90,180), red+linewidth(1.5)); draw((4,3)--(4,0), red+linewidth(1.5)); dot((0,3)); dot((4,0)); label("AA", (0,3), NW); label("BB", (4,0), SE); [/asy]