Number of Ant Paths
Source:
August 8, 2024
combinatorics2022
Problem Statement
An ant is walking on a sidewalk and discovers sidewalk panels with leaves inscribed in them, as shown below. Find the number of ways in which the ant can traverse from point to point if it can only move[*] up, down, or right (along the border of a sidewalk panel), or
[*] up-right (along one of two margin halves of a leaf)and cannot visit any border or margin half more than once (an example path is highlighted in red).
[asy]
unitsize(1cm);
int r = 4;
int c = 5;for (int i = 0; i < r; ++i) {
for (int j = 0; j < c; ++j) {
pair A = (j,i);
}
}
for (int i = 0; i < r; ++i) {
for (int j = 0; j < c; ++j) {
if (j != c-1) {
draw((j,i)--(j+1,i));
}
if (i != r-1) {
draw((j,i)--(j,i+1));
}
}
}for (int i = 1; i < r+1; ++i) {
for (int j = 0; j < c-2; ++j) {
fill(arc((i,j),1,90,180)--cycle,deepgreen);
fill(arc((i-1,j+1),1,270,360)--cycle,deepgreen);
draw((i-1,j)--(i,j+1), heavygreen+linewidth(0.5));
draw((i-2/3,j+1/3)--(i-2/3,j+1/3+0.1), heavygreen);
draw((i-1/3,j+2/3)--(i-1/3,j+2/3+0.1), heavygreen);
draw((i-2/3,j+1/3)--(i-2/3+0.1,j+1/3), heavygreen);
draw((i-1/3,j+2/3)--(i-1/3+0.1,j+2/3), heavygreen);
draw(arc((i,j),1,90,180));
draw(arc((i-1,j+1),1,270,360));
}
}
draw((0,3)--(0,1), red+linewidth(1.5));
draw((0,3)--(0,1), red+linewidth(1.5));
draw(arc((1,1),1,90,180), red+linewidth(1.5));
draw((1,2)--(1,1)--(2,1), red+linewidth(1.5));
draw(arc((2,2),1,270,360), red+linewidth(1.5));
draw(arc((4,2),1,90,180), red+linewidth(1.5));
draw((4,3)--(4,0), red+linewidth(1.5));
dot((0,3));
dot((4,0));
label("", (0,3), NW);
label("", (4,0), SE);
[/asy]