MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - College-Hosted Events
Harvard-MIT Mathematics Tournament
2017 Harvard-MIT Mathematics Tournament
3
2017 General #3
2017 General #3
Source:
May 8, 2018
number theory
Problem Statement
Find the number of integers
n
n
n
with
1
≤
n
≤
2017
1 \le n \le 2017
1
≤
n
≤
2017
so that
(
n
−
2
)
(
n
−
0
)
(
n
−
1
)
(
n
−
7
)
(n-2)(n-0)(n-1)(n-7)
(
n
−
2
)
(
n
−
0
)
(
n
−
1
)
(
n
−
7
)
is an integer multiple of
1001
1001
1001
.
Back to Problems
View on AoPS