MathDB
1990 AMC 12 #28

Source:

December 30, 2011
AMC

Problem Statement

A quadrilateral that has consecutive sides of lengths 70,90,13070, 90, 130 and 110110 is inscribed in a circle and also has a circle inscribed in it. The point of tangency of the inscribed circle to the side of length 130130 divides that side into segments of lengths xx and yy. Find xy|x-y|.
<spanclass=latexbold>(A)</span> 12<spanclass=latexbold>(B)</span> 13<spanclass=latexbold>(C)</span> 14<spanclass=latexbold>(D)</span> 15<spanclass=latexbold>(E)</span> 16 <span class='latex-bold'>(A)</span>\ 12 \qquad<span class='latex-bold'>(B)</span>\ 13 \qquad<span class='latex-bold'>(C)</span>\ 14 \qquad<span class='latex-bold'>(D)</span>\ 15 \qquad<span class='latex-bold'>(E)</span>\ 16