MathDB
Unique Solution

Source:

January 5, 2009
ceiling functionanalytic geometrygraphing linesslopefunctionalgebrasystem of equations

Problem Statement

Positive integers a a, b b, and c c are chosen so that a<b<c a<b<c, and the system of equations 2x\plus{}y\equal{}2003\text{ and }y\equal{}|x\minus{}a|\plus{}|x\minus{}b|\plus{}|x\minus{}c| has exactly one solution. What is the minimum value of c c? <spanclass=latexbold>(A)</span> 668<spanclass=latexbold>(B)</span> 669<spanclass=latexbold>(C)</span> 1002<spanclass=latexbold>(D)</span> 2003<spanclass=latexbold>(E)</span> 2004 <span class='latex-bold'>(A)</span>\ 668 \qquad <span class='latex-bold'>(B)</span>\ 669 \qquad <span class='latex-bold'>(C)</span>\ 1002 \qquad <span class='latex-bold'>(D)</span>\ 2003 \qquad <span class='latex-bold'>(E)</span>\ 2004