MathDB
functional equation

Source: Miklos Schweitzer 2005 q8

August 27, 2021
functional equationreal analysisalgebra

Problem Statement

Determine all continuous, strictly monotone functions ϕ:R+R\phi : \mathbb{R}^+\to\mathbb{R} such that F(x,y)=ϕ1(xϕ(x)+yϕ(y)x+y)+ϕ1(yϕ(x)+xϕ(y)x+y)F(x,y)=\phi^{-1} \left(\frac{x\phi(x)+y\phi(y)}{x+y}\right) + \phi^{-1} \left(\frac{y\phi(x)+x\phi(y)}{x+y}\right) is homogeneous of degree 1, ie F(tx,ty)=tF(x,y),x,y,tR+F(tx,ty)=tF(x,y) , \forall x,y,t\in\mathbb{R}^+
F(x,y)=F(y,x) and F(x,x)=2x