MathDB
Hard functional inequality

Source: Bulgaria IMO/Balkan MO 1998 TST and EGMO TST 2016, Day 2, Problem 3

February 3, 2023
functioninequalities

Problem Statement

Prove that there is no function f:R+R+f:\mathbb{R}^{+} \to \mathbb{R}^{+} such that f(x)2f(x+y)(f(x)+y)f(x)^2 \geq f(x+y)(f(x)+y) for all x,yR+x,y \in \mathbb{R}^{+}.