MathDB
0352 floor function sums 3rd edition Round 5 p2

Source:

May 9, 2021
algebrafloor function3rd edition

Problem Statement

Let k1k \ge 1 be an integer and a1,a2,...,ak,b1,b2,...,bka_1, a_2, ... , a_k, b1, b_2, ..., b_k rational numbers with the property that for any irrational numbers xi>1x_i >1, i=1,2,...,ki = 1, 2, ..., k, there exist the positive integers n1,n2,...,nk,m1,m2,...,mkn_1, n_2, ... , n_k, m_1, m_2, ..., m_k such that a1x1n1+a2x2n2+...+akxknk=b1x1m1+21x2m2+...+bkxkmka_1\lfloor x^{n_1}_1\rfloor + a_2 \lfloor x^{n_2}_2\rfloor + ...+ a_k\lfloor x^{n_k}_k\rfloor=b_1\lfloor x^{m_1}_1\rfloor +2_1\lfloor x^{m_2}_2\rfloor+...+b_k\lfloor x^{m_k}_k\rfloor Prove that ai=bia_i = b_i for all i=1,2,...,ki = 1, 2, ... , k.